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In this section, we introduce the Feynman parameterization, Lee-Pomeransky and Baikov rep-

resentations of Feynman loop integrals.

For loop-level amplitudes, we have the following integrals

I. FEYNMAN PARAMETRIZATION

We consider the Feynman parameterization in (+− . . .−) metric. Here we review the Feynman

parametrization in a systematic way.

The integral under consideration is,

G[α1, . . . αn] =

∫ L∏
i=1

dDli

iπD/2
1

Dα1
1 . . . Dαn

n
. (1)

The basic identity for Feynman parameterization is (with αj > 0),

1

Dα1
1 . . . Dαn

n
=

Γ(|α|)
Γ(α1) . . .Γ(αn)

∫ 1

0

n∏
i=1

dziδ(1−
∑
j

zj)
zα1−1

1 . . . zαn−1
n

(z1D1 + . . .+ znDn)|α|
(2)

Here |α| is the sum of α’s. Define l = (l1, . . . , lL)T as an L-component column vector. The

denominator of (2) is a quadratic function of l,

z1D1 + . . .+ znDn ≡ lTAl + 2bT l + c , (3)

where A is an L× L matrix, b is an L-component column vector and c is a scalar. A, b and c are

l-independent. Since A is symmetric, A can be diagonalized as A = OTJO where J is diagonal.

Consider the change of loop momenta, l = OT l̃ −A−1b. Then

z1D1 + . . .+ znDn = l̃TJl̃ + c− bTA−1b . (4)

Using Wick’s rotation l̃0i = il̃0i,E and (l̃i)
2 = −(l̃i,E)2, the integration contour is along the real axis

of l̃0i,E .

I[α1, . . . αn] =
(−1)|α|Γ(|α|)

Γ(α1) . . .Γ(αn)

∫ 1

0

n∏
i=1

dzi δ(1−
∑
j

zj)z
α1−1
1 . . . zαn−1

n

×
∫ L∏

i=1

dD l̃i,E

πD/2
1

(l̃TEJl̃E − c+ bTA−1b− iη)|α|
(5)

=
(−1)|α|Γ(|α| − DL

2 )

Γ(α1) . . .Γ(αn)

∫ 1

0

n∏
i=1

dzi δ(1−
∑
j

zj)z
α1−1
1 . . . zαn−1

n

FLD/2−|α|

U (L+1)D/2−|α| (6)

where,

U = detA, F = −cdetA+ bTAadjb− iη detA. (7)
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where Aadj = (detA)A−1 is the adjugate matrix of A. U and F are homogenous polynomials in z

with the degree L and L+ 1 respectively.

Note that U is a positive semidefinite polynomial but F may not not be positive semidefinite.

If there is a kinematic region for which F is positive semidefinite, we call this region Euclidean.

Note that for nonplanar loop integrals, the Euclidean region may not exist.

For the Euclidean region, both U and F are positive semidefinite. The integrand

FLD/2−|α|/U (L+1)D/2−|α| is well defined, and the integral must be real. For a region where F

is not positive semidefinite, we need to include the infinitesimal η and the integral would be com-

plex.

• Example: massless bubble integral. This is the simplest loop integral beyond the one-loop

tadpole integral. The propagators are

D1 = l21, D2 = (l1 − p)2 . (8)

The kinematics is p2 = s.

U = z1 + z2 (9)

F = −sz1z2 (10)

Note that s < 0 is the Euclidean region and the integral is real. s > 0 is the physical region

and the integral is complex.

For this simple integral, the direction Feynman parametrization gives the analytical result

G[α1, α2] =
(−1)α1+α2Γ

(
d
2 − α1

)
Γ
(
d
2 − α2

)
Γ
(
−d

2 + α1 + α2

)
(−s)

1
2

(d−2(α1+α2))

Γ (α1) Γ (α2) Γ (d− α1 − α2)
. (11)

The apparently simplest integral in this sector is (D = 4− 2ε),

G[1, 1] =
(−s)−εΓ(1− ε)2Γ(ε)

Γ(2− 2ε)
(12)

=
1

ε
+ (− log(−s)− γ + 2)

+ε

(
2

3

(
−6 log2(−s)− 12γ log(−s) + 24 log(−s) + π2 − 6γ2 + 24γ − 48

)
+

3

4

(
6 log2(−s) + 12γ log(−s)− 24 log(−s)− π2 + 6γ2 − 24γ + 48

))
+

ε2
(
− 1

6
log3(−s)− 1

2
γ log2(−s) + log2(−s) +

1

12
π2 log(−s)− 1

2
γ2 log(−s) + 2γ log(−s)

−4 log(−s)− 7ζ(3)

3
+
γπ2

12
− π2

6
− γ3

6
+ γ2 − 4γ + 8

)
+O

(
ε3
)

(13)
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where γ is the Euler gamma constant. The Riemann Zeta function is defined as,

ζ(x) ≡
∞∑
n=1

1

nx
(14)

We may simplify the expansion by

eεγ(−s)εG[1, 1] =
1

ε
+ 2 +

(
4− π2

12

)
ε+

(
−7ζ(3)

3
+ 8− π2

6

)
ε2 +

(
−14ζ(3)

3
+ 16− π2

3
− 47π4

1440

)
ε3 +O

(
ε4
)

(15)

The overall transformation eεγ removed all Euler constants. Since this is a one-scale integral,

(−s)ε factor removed the s dependence. The rest contains irrational numbers π, ζ(3) (and

more zeta values in the high order expansion).

However, the “simplest” integral is not G[1, 1] but the magic uniformly transcendental (UT)

integral ([1]),

eεγ(−s)εsG[1, 2] = −1

ε
+
π2ε

12
+

7ζ(3)ε2

3
+

47π4ε3

1440
+O

(
ε4
)
. (16)

Note that the εn order of this expression has the transcendental degree n+1. This expression

is much more concise than (15).

So why is G[1, 1] complicated? The relation between the two integrals is that

G[1, 1] =
s

−1 + 2ε
G[1, 2] . (17)

The factor −1 + 2ε messed up the expression for G[1, 1].

The main breakthrough of modern loop computation is to guess UT integrals and then to

evaluate them by the canonical differential equation [1].

• Massless planar double box. The propagators are

l21, (l1 − k1)2, (l1 − k1 − k2)2, (l2 + k1 + k2)2, (l2 − k4)2, l22, (l1 + l2)2 (18)

The polynomials are

U = z1z4 + z2z4 + z3z4 + z7z4 + z1z5 + z2z5 + z3z5 + z1z6 + z2z6 + z3z6 + z1z7

+z2z7 + z3z7 + z5z7 + z6z7

F = −sz1z3z4 − sz1z6z4 − sz2z6z4 − sz3z6z4 − sz1z7z4 − sz6z7z4 − sz1z3z5

−sz1z3z6 − sz1z3z7 − sz3z6z7 − tz2z5z7 (19)

Note that s < 0, t < 0 is the Euclidean region and the integral is real. Usually, we call s > 0,

t < 0 the “physical” region.
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• Massless nonplanar crossed box. The propagators are

l21, (l1 − k1)2, (l1 − k1 − k2)2, (l2)2, (l2 − k4)2, (l1 + l2)2, (l1 + l2 − k1 − k2 − k4)2 (20)

The polynomials are,

U = z1z4 + z2z4 + z3z4 + z6z4 + z7z4 + z1z5 + z2z5 + z3z5 + z1z6 + z2z6+

z3z6 + z5z6 + z1z7 + z2z7 + z3z7 + z5z7

F = −sz1z3z4 − sz3z6z4 + sz2z7z4 − sz1z3z5 − sz1z3z6 − sz1z3z7

−sz1z5z7 + tz2z7z4 − tz2z5z6 (21)

There is no Euclidean region for this integral. This integral is significantly harder to evaluate

then the planar counterpart.

The polynomials U and F can also be determined from the graph theory [2].

II. LEE-POMERANSKY REPRESENTATION

Lee-Pomeransky representation [3, 4] is a modern variant of Feynman parametrization,

G[α1, . . . αn] =
(−1)|α|Γ(D/2)

Γ
(
(L+ 1)D/2− |α|

)
Γ(α1) . . .Γ(αn)

∫ ∞
0

n∏
i=1

dzi z
α1−1
1 . . . zαn−1

n G−D/2 (22)

where G = F + U , for αn > 0. Note that F and U have different dimensions, and G is apparently

a “wrong” expression. How does this formula work?

The Russian trick is to insert a trivial integration into the formula, and rescale zi = z′is.∫ ∞
0

n∏
i=1

dzi

∫ ∞
0

dsδ(s−
n∑
i=1

zi) z
α1−1
1 . . . zαn−1

n G−D/2

=

∫ ∞
0

n∏
i=1

dz′i

∫ ∞
0

dsδ(1−
n∑
i=1

z′i) z
′α1−1
1 . . . z′αn−1

n s|α|−1(sLU(z′) + sL+1F (z′))−D/2

=

∫ ∞
0

n∏
i=1

dz′i

∫ ∞
0

dsδ(1−
n∑
i=1

z′i) z
′α1−1
1 . . . z′αn−1

n s|α|−1−DL/2(U(z′) + sF (z′))−D/2

=
Γ(|α| −DL/2)Γ(−|α|+ (D + 1)L/2)

Γ(D/2)

∫ ∞
0

n∏
i=1

dz′i z
′α1−1
1 . . . z′αn−1

n δ(1−
n∑
i=1

z′i)
F (z′)LD/2−|α|

U(z′)(L+1)D/2−|α|

(23)

Here we used the Beta function definition. It is clear that the result is consistent with the original

Feynman parameterization.
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When an index αi is zero, we need to modify (22) as,∫ ∞
0

dzi
Γ(αi)

zαi−1
i

(
. . .

)
→
(
. . .

)∣∣∣∣
zi→0

. (24)

When an index αi is negative, we need to modify (22) as,∫ ∞
0

dzi
Γ(αi)

zαi−1
i

(
. . .

)
→ (−1)αi

d−αi

dz−αi
i

(
. . .

)∣∣∣∣
zi→0

. (25)

The big advantage of the Lee-Pomeransky representation is that the kernel is simply one factor

G−D/2. It means the D − 2 dimensional integral can be reformulated as a combination of D

dimensional integrals, because

G−(D−2)/2 = G−D/2G . (26)

This kind of integration of G(...)f(z) is a focus of mathematical research. The theory of special

functions, the theory of D-modules, the theory of twisted cohomology are all related to this kine

of integration. As we will see later, Lee-Pomeransky representation has the special usage for IBPs.

For example, consider the massless box diagram

D1 = l21, D2 = (l1 − p1)2, D3 = (l1 − p1 − p2)2, D4 = (l1 − p4)2, (27)

with p1 · p2 = s/2, p1 · p4 = t/2, p1 · p3 = (−s− t)/2.

The Lee-Pomeransky polynomial is,

G = z1 + z2 + z3 + z4 − sz1z3 − tz2z4, (28)

Hence

G(D−2)[1, 1, 1, 1] = −2(D − 6)

(D − 2)

(
GD[2, 1, 1, 1] +GD[1, 2, 1, 1] +GD[1, 1, 2, 1]

+GD[1, 1, 1, 2]

)
− 2s

D − 2
GD[2, 1, 2, 1]− 2t

D − 2
GD[1, 2, 1, 2] . (29)

Note that D is not an integer and the above dimension-shift identity is regularized by ε. The above

expression has the correct mass dimension [6].

III. BAIKOV REPRESENTATION

Baikov representation is the duality of Feynman parametrization. This surprisingly simple

representation was only discovered in the 1990s. The idea is that instead of integrating over the

loop momenta, we integrate over the Lorentz invariant scalar product.
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L is the loop order and the li’s are the loop momenta. We have E independent external vectors

that we label as p1, ..., pE . We assume that the Feynman integrals have been reduced on the

integrand level, and set m = LE + L(L+ 1)/2 which equals the number of scalar products in the

configuration. The LE + L(L+ 1)/2 products are defined as

xij = li · pj , 1 ≤ i ≤ L, 1 ≤ j ≤ E, (30)

yij = li · lj , 1 ≤ i ≤ j ≤ L (31)

The Baikov representation (I) [3, 5] reads,

G[n1, . . . , nm] = CLE U
E−D+1

2

∫
Ω

dx̄dȳ P
D−L−E−1

2
1

Dn1
1 · · ·D

nm
m

. (32)

Note that Di’s are linear functions of the scalar product. So the propagators are linearized. Here,

P is the Baikov polynomial, which can be written as a Gram determinant,

P = detG

 l1, . . . lL, p1, . . . pE

l1, . . . lL, p1, . . . pE

 . (33)

Moreover, U and CLE are the Gram determinants respectively constant factor below:

U = detG

 p1, . . . pE

p1, . . . pE

 , CLE =
π

L−m
2

Γ(D−E−L+1
2 ) . . .Γ(D−E2 )

, (34)

The Baikov representation (II) [3, 5] reads,

G[n1, . . . , nm] = JCLE U
E−D+1

2

∫
Ω

dnz P
D−L−E−1

2
1

zn1
1 · · · z

nm
m

. (35)

where zi = Dm. Here J , a rational number, is a the Jacobian from (x, y) to z.

Disclaim: We do not treat the overall powers of i in Baikov representation carefully in the

expression.

Baikov represent is great for deriving integral relations (IBP, DE and dimension-shift), for the

cut analysis. However, usually it is not convenient to evaluate integrals via this expression.

Example: Baikov representation for the one-loop massless box integral.

G[α1, . . . α4] =

∫
dDl

iπD/2
1

Dα1
1 . . . Dα4

4

. (36)

We set up a vector basis for the D dimensional spacetime,

p1, p2, p4, ω1, . . . , ωD−3 (37)
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where pi · ωj = 0, ωi · ωj = −δij . This is an orthogonal decomposition of the “extra” spacetime.

Expand l on this basis,

lµ = c1p
µ
1 + c2p

µ
2 + c3p

µ
4 + f1ω

µ
1 + . . .+ fD−3ω

µ
D−3 (38)

Then we have

dDl = d3c dD−3f det(p1, p2, p4, ω
µ
1 , . . . , ω

µ
D−3) (39)

= d3c dD−3f detG

 p1, p2 p4

p1, p2 p4

1/2

(40)

= dx1dx2dx3 d
D−3f detG

 p1, p2 p4

p1, p2 p4

−1/2

(41)

where in the second line we used the relation between the Gram determinant and the determinant

of the vectors. In the last line we introduced the scalar products,

x1 = l · p1, x1 = l · p2, x3 = l · p4, (42)

We dropped the power of imaginary“i” in this derivation.

We define λ = f2
1 + . . .+f2

D−3. Then l2 = F (c1, c2, c3)2−λ, where F is some quadratic function

of c’s. By simple linear algebra, we see that

λ = −

detG

 l p1, p2 p4

l p1, p2 p4


detG

 p1, p2 p4

p1, p2 p4

 = −P
U
. (43)

Therefore we see the measure∫
dDl→ AD−4

∫ ∞
0

dλ
1

λ1/2
λ

D−4
2

∫
dx1dx2dx3U

− 1
2

= U
4−d
2

π
D−3
2

Γ(D−3
2 )

∫ ∞
0

dλ

∫
dx1dx2dx3P

d−5
2 (44)

The final transformation is that d(l2) = df(c1, c2, c3)2 − dλ. Define y = l2, then∫
dDl→ U

4−d
2

π
D−3
2

Γ(D−3
2 )

∫
dy

∫
dx1dx2dx3P

d−5
2 (45)

where the integration region is defined by λ > 0 which is an area with complicated shape in the

x1, x2, x3, y space.
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What we did above is to derive the Baikov for the one-loop case in a straightforward way. In

practice, we need to find the Baikov polynomial P in terms of either the scalar product or the

propagators (i.e, Baikov zi variables).

Note that

G

 l p1, p2 p4

l p1, p2 p4

 =


y x1 x2 x3

x1 0 s
2

1
2(−s− t)

x2
s
2 0 t

2

x3
1
2(−s− t) t

2 0

 (46)

• If we use the Baikov representation (32), then

P =
1

4

(
− s2ty + s2x2

1 + s2x2
3 + 2s2x1x3 − st2y + 2stx2

1 + 2stx1x2 + 2stx1x3

−2stx2x3 + t2x2
1 + t2x2

2 + 2t2x1x2

)
. (47)

where x1 = l · p1, x2 = l · p2, x3 = l · p4 and y = l · l.

• If we use the Baikov variables zi’s in (35), then

P =
1

16

(
s2t2 − 2s2tz2 − 2s2tz4 + s2z2

2 + s2z2
4 − 2s2z2z4 − 2st2z1 − 2st2z3 + 2stz1z2

−4stz1z3 + 2stz2z3 + 2stz1z4 − 4stz2z4 + 2stz3z4 + t2z2
1 + t2z2

3 − 2t2z1z3

)
. (48)

The constant factor U = −st(s+ t)/4.

A. First applications of the Baikov representation

• Dimension shift identity. From the Baikov representation, we see that D + 2-dimensional

representation can be directly rewritten as a linear combination of D-dimensional integrals.

P
(D+2)−L−E−1

2 → P
D−L−E−1

2 P (49)

In practice, usually we prefer using the D − 2 → D dimension shift identity from Lee-

Pomeransky representation since usually Lee-Pomeransky polynomial G is simpler than the

Baikov polynomial P . The backward shift D + 2 → D identities can then be derived from

inverse the D − 2→ D shifts.
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• Guess integral reduction coefficients. When there is no ISP , the top sector integral reduction

coefficients can be “guess” from the residues of Baikov representation. This is the original

motive of Baikov representation.

For example, we consider the massless double box G[1, 1, 1, 1] and G[3, 1, 1, 1], it is easy to

compute that in the Baikov representation,

Res

(
G[1, 1, 1, 1])

)
= U

4−D
2

∮
(0,0,0,0)

d4z P
D−5
2

1

z1 · · · z4
=

26−d(s+ t)2(st)D(−st(s+ t))−D/2

s3t3

(50)

Res

(
G[3, 1, 1, 1])

)
= U

4−D
2

∮
0
dz1

1

z3
1

(
1

16
t2(s− z1)2

)D−5
2

=
25−D(D − 6)(D − 5)(s+ t)2(st)D(−st(s+ t))−D/2

s5t3
(51)

Then we guess

G[3, 1, 1, 1] =
(D − 6)(D − 5)

2s2
G[1, 1, 1, 1] + triangles + bubbles. (52)

This guess is consistent with the rigorous IBP computation, which would be introduced in

the future.

• Leading Singularity. The great advantage of Baikov representation is that it keeps the pole

structures of propagators in Feynman diagrams and the monomials in (35) made the residue

computation transparent. Roughly speaking, if we take the residues of all Baikov variables,

we get the so-called leading Singularity.

For example, for the 4− 2ε massless one-loop box G[1, 1, 1, 1].

JCLE U
4−D
2

∫
Ω

d4z P
D−5
2

1

z1 · · · z4

→
∮

(0,0,0,0)
d4z P

D−5
2

1

z1 · · · z4
= 4/(st) (53)

In the last line, by hand-waving arguments, we set D → 4. Here we do not care about

the factor of π or rational constant. 1/(st) is the leading singularity of the 4 − 2ε massless

one-loop box G[1, 1, 1, 1].

Leading singularity is the most divergent part of the G[1, 1, 1, 1] for singular external kine-

matics. In the future, we will learn that

eεγ(−s)εG[1, 1, 1, 1] =
1

st

(
1

ε2
− 2 log(t/s)

ε
− 4π2

3
+O(ε)

)
(54)
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The rational function 1/(st), which is divergent if s → 0 or t → 0, matches the leading

singularity from the Baikov residue computation.
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